Spectral Approximation of the Free-Space Heat Kernel
نویسندگان
چکیده
Many problems in applied mathematics, physics, and engineering require the solution of the heat equation in unbounded domains. Integral equation methods are particularly appropriate in this setting for several reasons: they are unconditionally stable, they are insensitive to the complexity of the geometry, and they do not require the artificial truncation of the computational domain as do finite difference and finite element techniques. Methods of this type, however, have not become widespread due to the high cost of evaluating heat potentials. When m points are used in the discretization of the initial data, M points are used in the discretization of the boundary, and N time steps are computed, an amount of work of the order O(N2M2 + NMm) has traditionally been required. In this paper, we present an algorithm which requires an amount of work of the order O(NM logM + m logm) and which is based on the evolution of the continuous spectrum of the solution. The method generalizes an earlier technique developed by Greengard and Strain (1990, Comm. Pure Appl. Math. 43, 949) for evaluating layer potentials in bounded domains. 2000 Academic Press
منابع مشابه
The combined reproducing kernel method and Taylor series for solving nonlinear Volterra-Fredholm integro-differential equations
In this letter, the numerical scheme of nonlinear Volterra-Fredholm integro-differential equations is proposed in a reproducing kernel Hilbert space (RKHS). The method is constructed based on the reproducing kernel properties in which the initial condition of the problem is satised. The nonlinear terms are replaced by its Taylor series. In this technique, the nonlinear Volterra-Fredholm integro...
متن کاملNumerical resolution of large deflections in cantilever beams by Bernstein spectral method and a convolution quadrature.
The mathematical modeling of the large deflections for the cantilever beams leads to a nonlinear differential equation with the mixed boundary conditions. Different numerical methods have been implemented by various authors for such problems. In this paper, two novel numerical techniques are investigated for the numerical simulation of the problem. The first is based on a spectral method utiliz...
متن کاملSolving integral equations of the third kind in the reproducing kernel space
A reproducing kernel Hilbert space restricts the space of functions to smooth functions and has structure for function approximation and some aspects in learning theory. In this paper, the solution of an integral equation of the third kind is constructed analytically using a new method. The analytical solution is represented in the form of series in the reproducing kernel space. Some numerical ...
متن کاملPseudo-spectral Matrix and Normalized Grunwald Approximation for Numerical Solution of Time Fractional Fokker-Planck Equation
This paper presents a new numerical method to solve time fractional Fokker-Planck equation. The space dimension is discretized to the Gauss-Lobatto points, then we apply pseudo-spectral successive integration matrix for this dimension. This approach shows that with less number of points, we can approximate the solution with more accuracy. The numerical results of the examples are displayed.
متن کاملOn the numerical solution of the heat equation I: Fast solvers in free space
We describe a fast solver for the inhomogeneous heat equation in free space, following the time evolution of the solution in the Fourier domain. It relies on a recently developed spectral approximation of the free-space heat kernel coupled with the non-uniform fast Fourier transform. Unlike finite difference and finite element techniques, there is no need for artificial boundary conditions on a...
متن کاملwFEM heat kernel: Discretization and applications to shape analysis and retrieval
Recent results in geometry processing have shown that shape segmentation, comparison, and analysis can be successfully addressed through the heat diffusion kernel. In this paper, we focus our attention on the properties (e.g., scale-invariance, semi-group property, robustness to noise) of the wFEM heat kernel, recently proposed in [PF10], and its application to shape comparison and feature-driv...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 1999